In Vivo Biocompatibility of PLGA-Polyhexylthiophene Nanofiber Scaffolds in a Rat Model

نویسندگان

  • Anuradha Subramanian
  • Uma Maheswari Krishnan
  • Swaminathan Sethuraman
چکیده

Electroactive polymers have applications in tissue engineering as a physical template for cell adhesion and carry electrical signals to improve tissue regeneration. Present study demonstrated the biocompatibility and biodegradability of poly(lactide-co-glycolide)-poly(3-hexylthiophene) (PLGA-PHT) blend electrospun scaffolds in a subcutaneous rat model. The biocompatibility of PLGA-undoped PHT, PLGA-doped PHT, and aligned PLGA-doped PHT nanofibers was evaluated and compared with random PLGA fibers. The animals were sacrificed at 2, 4, and 8 weeks; the surrounding tissue along with the implant was removed to evaluate biocompatibility and biodegradability by histologic analysis and GPC, respectively. Histology results demonstrated that all scaffolds except PLGA-undoped PHT showed decrease in inflammation over time. It was observed that the aligned PLGA-doped PHT fibers elicited moderate response at 2 weeks, which further reduced to a mild response over time with well-organized tissue structure and collagen deposition. The degradation of aligned nanofibers was found to be very slow when compared to random fibers. Further, there was no reduction in the molecular weight of undoped form of PHT throughout the study. These experiments revealed the biocompatibility and biodegradability of PLGA-PHT nanofibers that potentiate it to be used as a biomaterial for various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological Effects of HA on the Cell Compatibility of Electrospun HA/PLGA Composite Nanofiber Scaffolds

Tissue engineering is faced with an uphill challenge to design a platform with appropriate topography and suitable surface chemistry, which could encourage desired cellular activities and guide bone tissue regeneration. To develop such scaffolds, composite nanofiber scaffolds of nHA and sHA with PLGA were fabricated using electrospinning technique. nHA was synthesized using precipitation method...

متن کامل

ساخت داربست نانوفیبر هیبریدی PCL/PLGA با قابلیت رهایش کنترل‌شده انسولین به منظور کاربرد آن در مهندسی بافت غضروف

Introduction: Poly lactic co- glycolic acid (PLGA) and poly caprolacton (PCL) are highly applicable polymers in the field of drug delivery and tissue engineering scaffolds. Therefore, this study aimed to design an insulin-loaded PCL/PLGA hybrid nanofiber scaffold in order to be applied in attachment and growth of chondrocytes. Moreover, it can provide a vehicle for the controlled release of a...

متن کامل

Designer D-form self-assembling peptide scaffolds promote the proliferation and migration of rat bone marrow-derived mesenchymal stem cells

Self-assembling peptide (SAP) nanofiber hydrogel scaffolds have become increasingly important in tissue engineering due to their outstanding bioactivity and biodegradability. However, there is an initial concern on their long-term clinical use, since SAPs made of L-form amino acid sequences are sensitive to enzymatic degradation. In this study, we present a designer SAP, D-RADA16, made of all D...

متن کامل

PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration

The development of tissue engineering in the field of orthopedic surgery is booming. Two fields of research in particular have emerged: approaches for tailoring the surface properties of implantable materials with osteoinductive factors as well as evaluation of the response of osteogenic cells to these fabricated implanted materials (hybrid material). In the present study, we chemically grafted...

متن کامل

The Role of Biodegradable Engineered Nanofiber Scaffolds Seeded with Hair Follicle Stem Cells for Tissue Engineering

Background: The aim of this study was to fabricate the poly caprolactone (PCL) aligned nanofiber scaffold and to evaluate the survival, adhesion, proliferation, and differentiation of rat hair follicle stem cells (HFSC) in the graft material using electrospun PCL nanofiber scaffold for tissue engineering applications. Methods: The bulge region of rat whisker was isolated and cultured in DMEM: n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013